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Background

* Advance turbine systems with higher efficiency and low emission operate at
high inlet temperatures that require the use of thermal barrier coatings
(TBCs) on metallic engine components

« TBCs become “prime reliant” material — evaluation of their quality/condition
and prediction of their life by NDE is important

« Current NDE methods are not suitable for quantitative TBC evaluation

— Optical methods have some success (e.g., stress sensing), but only suitable for
thin or EB-PVD TBCs that are semi-transparent, and susceptible to coating
contaminations (in dirty fuels)

« Development in optical NDE methods has dominated in last decade

— Other methods (ultrasonic, eddy current, traditional thermal, etc) are not
guantitative and generally with no or poor spatial resolution

— Current methods are mostly used to detect large defects such as delaminations

* Quantitative NDE methods are required for TBC characterization
— Accurate measurement of TBC properties
— High-resolution detection of crack initiation and propagation
— Applicable to more complex TBCs (duel-layer) or with property gradient



Quantitative Approach for TBC Life Prediction

 Based on NDE measurement of TBC conductivity k

— TBC conductivity is the most important thermophysical parameter
* Measured for all coatings
* Used in component design

— TBC conductivity evolution has characteristic features (many studies)
* As-processed TBC: baseline conductivity
* - TBC sintering: conductivity increase
* - TBC degradation (internal cracking): conductivity decrease
* > TBC delamination: significant conductivity drop
* > TBC spallation (failure)

This approach requires accurate measurement of TBC conductivity!
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Objectives

* Development of advanced NDE methods for coatings

— Multilayer thermal modeling method for quantitative measurement of
TBC thermal properties including conductivity and heat capacity
* For ceramic as well as metallic coatings with various thickness

— Thermal tomography method for high-resolution imaging of internal
structures and detection of small cracks and delaminations

» For ceramic as well as metallic coatings with various thickness

— Optical methods: laser backscatter, mid-IR reflectance, OCT, confocal
* For thin APS TBCs and EB-PVD TBCs

* Development of NDE methods for functional materials
— Synchrotron x-ray microCT for microstructural imaging of membranes
— Thermal tomography for imaging component internal structure



Milestones

* Evaluation of NDE technologies for TBCs (12-15-09)

— Optical methods, mid-IR back reflection, OCT, and laser backscatter,
are most suitable for thin APS TBCs (<200-300um) and EB-PVD TBCs

« Confocal microscopy does not work well due to refractive index mismatch

— Effort was focused on development of thermal imaging methods that are
applicable to all TBCs (also metallic coatings)

« Evaluation of thermal and x-ray imaging for functional materials such
as membranes (6-15-10)
— Development of thermal tomography method

* Thermal imaging NDE tests to assess potential for prediction of TBC
degradation and lifetime (9-30-10)

— Some samples were obtained and will be tested



NDE Development for TBCs

 NDE development at ANL is focused on thermal imaging methods
— For quantitative TBC analysis (e.g., thermal properties, flaw size/depth)
— Applicable to all TBCs and other coatings (e.g., metallic coatings)

* (1) Multilayer thermal modeling method (2D imaging):
— TBC thermal conductivity and thickness distribution

« Accuracy is most important!

« TBC conductivity is measured mostly by laser flash method which is a two-
sided thermal method and not suitable for NDE of real component

— TBC cracking and delamination

* (2) Thermal tomography method:
— 3D imaging of TBC structure and property distribution
— Determination of TBC thickness and damage size/depth



One-Sided Flash Thermal Imaging Setup
for Testing TBC-Coated Turbine Blade

* Image entire surface (100% inspection)
« Fast (a few seconds for testing, up to a few minutes for data processing)
» Data processing is completely automated (no operator adjustment)
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Typical Raw Thermal Imaging Data

A typical image

Flash lamp
at left side

Low temperature -

. High temperature

« Total time period is ~0.1 s
« APS TBC of 1” diameter



Characteristics of Thermal Imaging Data
(1- and 2-layer materials)

Typical surface temperature and its slope at a single pixel
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« Thermal imaging data, i.e., surface temperature and its slope at each
surface pixel, are significantly different for 1- and 2-layer materials
¢ Same data can be used to:

— Predict thermal properties of coating (and substrate thickness)
— Construct 3D (tomography) images of the material system



Multilayer Thermal Modeling Method

Measured data T(x,y,t):
Time series of 2D thermal
(surface temperature) images
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Prediction for TBC Thermal Properties

« Multilayer thermal modeling can determine two coating parameters:
— Thermal effusivity: e = (poC_k)*/2
— Parameter: n = L/a2 where « is thermal diffusivity

 TBC thermal properties are determined when thickness L is know:
— Thermal conductivity: k = Le/n
— Heat capacity: pC, = enl/L

- Significant advantage: k and pC, are determined together
— Note: laser flash can only determine parameter n
— Measurement of coating density p and specific heat C, is not trivial!



Thermal Tomography Method

Measured data T(x,y,t):

Time series of thermal T .
omography results e(x,y,z):
(surface temperature) images graphy ( y )

3D spatial distribution of a material

property within the sample
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« Thermal effusivity tomography:

Convert measured thermal-imaging data T(x,y,t) into 3D material thermal-
effusivity distribution e(x,y,z) [e = (pC k)]

e(X,y,z) can be sliced in any planes (similar to x-ray CT slices)
Thermal effusivity is significantly different between coating, substrate, and flaws
Does not require prior knowledge of sample property for analysis



Performance of Thermal Tomography Method

Single-layer material; effusivity profiles along depth (cross-section)
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Thermal Tomography Imaging of a CMC Plate

Sample diagram
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Cross-Sectional Video of Entire Plate

Play direction

* Many small defects (with low/’high” effusivity) in effusivity images
« High spatial resolution; but it decreases with depth



Recent Thermal Imaging NDE
Development for TBCs

o 2D multilayer thermal modeling method
— Two issues identified last year were resolved:
* (1) use of black paint on thin coatings (<300um thickness)
* (2) prediction accuracy was improved by use of a reference

— Calibration tests were conducted for a set of EB-PVD TBCs and still
underway for both APS and EBPVD TBCs

« 3D Thermal tomography method
— Analysis of TBCs, alumina and metallic coatings (thin and thick)
— Data-processing software was further improved

— A new theory with improved depth-resolution was developed (a U.S.
patent is being filed)



Paint Assessment Result (0.15mm APS TBC)

Thermal conductivity k Heat capaC|ty pC
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* Average thermal properties:
— Paint #1: k = 0.925 W/m-K, pC, = 3.272J/cm3-K
— Paint#2: k =0.803 W/m-K, pC, = 3.057J/cm3-K

» Paint #2 produces better thermal property data
— Data difference between the paints is ~10%!
— This only affects thin coatings (<300um thick)



Multilayer Modeling Predicted TBC Properties

TBC conductivity k (W/m-K) TBC heat capacity pC, (J/cm3-K)
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Predicted Thermal Properties for Thin EB-PVD TBC

Average k =
0.87 W/m-K

TBC conductivity k (W/m-K)
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Average pC, =
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TBC coating thickness L = 50um, substrate thickness = 3.1 mm
Sample curtsey of Dr. A.M. Limarga and Dr. D. Clark of Harvard Univ.
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Predicted thermal properties for thin metallic
bond coat on Rene80 substrate
BC conductivity k (W/m-K)  BC heat capacity pC, (J/cm3-K)
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o Sample curtsey of Dr. A. Kulkarni of Siemens
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Thermal tomography plane slice images of thin
metallic bond coat on Rene80 substrate
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« Each bond coat slice ~28um thick; each substrate slice ~55um thick



Thermal tomography cross-section slice images of
thin metallic bond coat on Rene80 substrate

Location of cross-sections

@J=15 @J=38
BC
e 1

f " ' I.;-' Substrate

Edge effect (due to angled flash)

* Bond coat thickness is assumed at 125um with total of 4.5 slices, so each
slice thickness is 28um

* Substrate thickness is assumed 3.1mm with total of 56.5 slices, so each
substrate slice is 55um thick
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Thermal tomography images of a 1"-dia. TBC
sample (APS TBC, 14mil thick)

Plane slice images

(1/4 TBC depth) F10 (mid TBC depth) F15 (3/4 TBC depth_) F20 (@ mterface) - E35 (in substrate ).
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« Each coating slice is ~18um thick, each substrate sllce IS ~43um (scaled by dlffuswlty)
 Many small cracks (<1mm in size) were detected within TBC (@ half TBC thickness)
« Sample curtsey of Dr. D. Zhu of NASA — NASA is now conducting destructive verification!
Thermal gradient test Cross-section slice images
- 10-30min cycles
- surface @ 1500°C
- Interface @1220°C
(micro-delaminations)

_ ¥ A

Thickness of coating
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Thickness of substrate
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k (W/m-K) - ANL

Comparison of measured TBC thermal properties from
thermal imaging at ANL and other methods
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* All EB-PVD TBCs, thickness from 50 to 175 um
* Accuracy typically within 10%!
« Samples from Dr. A.M. Limarga and Dr. D. Clark of Harvard Univ.



Accuracy for TBC Property Predictions

e Current measurement data are repeatable and accurate
— Repeatability is typically <2%

— Measured data are <10% compared with those by other methods (for
EB-PVD TBCs)

 Measurement accuracy could be affected by

— Secondary effects such as surface roughness, flash duration, black
paint, system setup, etc;

— Note: data from other methods may not be accurate (e.g., accuracy of
laser flash method is normally considered within 10%)



Summary

* Multilayer modeling method was developed for quantitative measurement
and imaging of TBC thermal properties

— Predicted thermal properties are repeatable and accurate
« Repeatability is typically <2%
* Measured data are <10% compared with those by other methods (for EB-PVD TBCs)
« Measured data for metallic coatings were also accurate (data not shown here)
« Additional calibration with APS TBCs are planned

— “All” thermal properties of a coating are measured in one test

« Laser flash, e.g., needs to measure coating density and heat capacity, both
measurements are not trivial

— Capable to predict evolution of TBC conductivity for entire TBC life cycle
« TBC samples are required (some obtained)

* Thermal tomography method was improved for 3D structural imaging
— Destructive verification for detected small-cracks is being conducted (NASA)
— A new theory with improved depth resolution was developed

* Collaborations were established with industry and academia for technology
development and potential technology transfer

— Siemens, Praxair, Rolls Royce, SUNY, NASA, UCSB, etc



Planned Future Efforts

* Development of thermal modeling method

— Continue calibration of predicted TBC properties
 For APS TBCs as well as EB-PVD TBCs
* Apply to wider TBC parameter range: thin/thick, graded/layered, etc
— Investigate secondary effects that affect prediction accuracy
« Surface roughness, heat loss, flash duration, black paint, system setup, etc
— Develop method to determine thermal properties of dual-layer coatings and
coating conductivity gradient with depth (due to thermal exposure)

— Develop models to account for coating transparency (so as-sprayed coating can
be directly imaged)

* Development of thermal tomography method
— Correlate NDE data with destructive examination results
— Implement and validate the new high-resolution algorithm for data processing

« Validation of NDE model for TBC lifetime prediction

— In collaboration with partners, perform TBC life-cycle tests and correlate NDE
data with TBC life

* Correlation between different NDE methods
— Work with collaborators who are developing other methods
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