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Background
• Advance turbine systems with higher efficiency and low emission operate at 

high inlet temperatures that require the use of thermal barrier coatings 
(TBCs) on metallic engine components

• TBCs become “prime reliant” material – evaluation of their quality/condition 
and prediction of their life by NDE is important

• Current NDE methods are not suitable for quantitative TBC evaluation
– Optical methods have some success (e.g., stress sensing), but only suitable for 

thin or EB-PVD TBCs that are semi-transparent, and susceptible to coating 
contaminations (in dirty fuels)

• Development in optical NDE methods has dominated in last decade

– Other methods (ultrasonic, eddy current, traditional thermal, etc) are not 
quantitative and generally with no or poor spatial resolution

– Current methods are mostly used to detect large defects such as delaminations

• Quantitative NDE methods are required for TBC characterization
– Accurate measurement of TBC properties
– High-resolution detection of crack initiation and propagation
– Applicable to more complex TBCs (duel-layer) or with property gradient
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Quantitative Approach for TBC Life Prediction

• Based on NDE measurement of TBC conductivity k
– TBC conductivity is the most important thermophysical parameter

• Measured for all coatings
• Used in component design

– TBC conductivity evolution has characteristic features (many studies)
• As-processed TBC: baseline conductivity
•  TBC sintering: conductivity increase
•  TBC degradation (internal cracking): conductivity decrease
•  TBC delamination: significant conductivity drop
•  TBC spallation (failure) 

• This approach requires accurate measurement of TBC conductivity!
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Objectives

• Development of advanced NDE methods for coatings
– Multilayer thermal modeling method for quantitative measurement of 

TBC thermal properties including conductivity and heat capacity
• For ceramic as well as metallic coatings with various thickness

– Thermal tomography method for high-resolution imaging of internal 
structures and detection of small cracks and delaminations

• For ceramic as well as metallic coatings with various thickness

– Optical methods: laser backscatter, mid-IR reflectance, OCT, confocal
• For thin APS TBCs and EB-PVD TBCs

• Development of NDE methods for functional materials
– Synchrotron x-ray microCT for microstructural imaging of membranes
– Thermal tomography for imaging component internal structure
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Milestones

• Evaluation of NDE technologies for TBCs (12-15-09)
– Optical methods, mid-IR back reflection, OCT, and laser backscatter, 

are most suitable for thin APS TBCs (<200-300µm) and EB-PVD TBCs
• Confocal microscopy does not work well due to refractive index mismatch

– Effort was focused on development of thermal imaging methods that are 
applicable to all TBCs (also metallic coatings)

• Evaluation of thermal and x-ray imaging for functional materials such 
as membranes (6-15-10)
– Development of thermal tomography method

• Thermal imaging NDE tests to assess potential for prediction of TBC 
degradation and lifetime (9-30-10)
– Some samples were obtained and will be tested



NDE Development for TBCs

• NDE development at ANL is focused on thermal imaging methods
– For quantitative TBC analysis (e.g., thermal properties, flaw size/depth)
– Applicable to all TBCs and other coatings (e.g., metallic coatings)

• (1) Multilayer thermal modeling method (2D imaging):
– TBC thermal conductivity and thickness distribution

• Accuracy is most important!
• TBC conductivity is measured mostly by laser flash method which is a two-

sided thermal method and not suitable for NDE of real component
– TBC cracking and delamination

• (2) Thermal tomography method: 
– 3D imaging of TBC structure and property distribution
– Determination of TBC thickness and damage size/depth
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One-Sided Flash Thermal Imaging Setup 
for Testing TBC-Coated Turbine Blade

• Image entire surface (100% inspection)
• Fast (a few seconds for testing, up to a few minutes for data processing)
• Data processing is completely automated (no operator adjustment)

Flash lamp IR camera

Monitor

Turbine blade
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Typical Raw Thermal Imaging Data

• Total time period is ~0.1 s
• APS TBC of 1” diameter
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Characteristics of Thermal Imaging Data 
(1- and 2-layer materials)
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• Thermal imaging data, i.e., surface temperature and its slope at each 
surface pixel, are significantly different for 1- and 2-layer materials

• Same data can be used to:
– Predict thermal properties of coating (and substrate thickness)
– Construct 3D (tomography) images of the material system



Multilayer Thermal Modeling Method
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Prediction for TBC Thermal Properties

• Multilayer thermal modeling can determine two coating parameters:
– Thermal effusivity: e = (ρCpk)1/2

– Parameter: η = L/α1/2  where α is thermal diffusivity

• TBC thermal properties are determined when thickness L is know:
– Thermal conductivity: k = Le/η
– Heat capacity: ρCp = eη/L

• Significant advantage: k and ρCp are determined together
– Note: laser flash can only determine parameter η
– Measurement of coating density ρ and specific heat Cp is not trivial!
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Thermal Tomography Method

• Thermal effusivity tomography:
– Convert measured thermal-imaging data T(x,y,t) into 3D material thermal-

effusivity distribution e(x,y,z) [e = (ρCpk)1/2]
– e(x,y,z) can be sliced in any planes (similar to x-ray CT slices)
– Thermal effusivity is significantly different between coating, substrate, and flaws
– Does not require prior knowledge of sample property for analysis
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Performance of Thermal Tomography Method

• Some resolution degradation at back surface
• Total effusivity conservation is maintained

Single-layer material; effusivity profiles along depth (cross-section)
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Thermal Tomography Imaging of a CMC Plate

Diameter   Depth
Hole (mm) (mm)

A 7.5 0.25
B 7.5 1.12
C 7.5 0.97
D 7.5 0.87
E 5.0 0.78
F 2.5 0.85
G 1.0 0.85

ABC

DEFG

Sample thickness ~ 2.5 mm

Front surface Back surface

defects

Sample diagram

A B C

D E F G

Depth is measured from front surface 
to the bottom surface of the machined 
holes from back surface

Plane image
at 0.86 mm depth

Cross-Sectional Images Sample Cross Sections
(not in scale)

50 mm

4.2 mm

ABC

Front surface

Back surface
DEFG

2.5 mm
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Cross-Sectional Video of Entire Plate

• Many small defects (with low/”high” effusivity) in effusivity images
• High spatial resolution; but it decreases with depth

Play direction
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Recent Thermal Imaging NDE 
Development for TBCs

• 2D multilayer thermal modeling method
– Two issues identified last year were resolved: 

• (1) use of black paint on thin coatings (<300µm thickness)
• (2) prediction accuracy was improved by use of a reference

– Calibration tests were conducted for a set of EB-PVD TBCs and still 
underway for both APS and EBPVD TBCs

• 3D Thermal tomography method
– Analysis of TBCs, alumina and metallic coatings (thin and thick)
– Data-processing software was further improved
– A new theory with improved depth-resolution was developed (a U.S. 

patent is being filed)
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Paint Assessment Result (0.15mm APS TBC)

• Average thermal properties: 
– Paint #1: k = 0.925 W/m-K,  ρCp = 3.272J/cm3-K
– Paint #2: k = 0.803 W/m-K, ρCp = 3.057J/cm3-K

• Paint #2 produces better thermal property data
– Data difference between the paints is ~10%!
– This only affects thin coatings (<300µm thick)
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Multilayer Modeling Predicted TBC Properties

• APS TBC thickness = 0.86 mm, substrate thickness = 9.5 mm
• Sample curtsey of Dr. Y. Tan of Stony Brook Univ.

TBC conductivity k (W/m-K) TBC heat capacity ρCp (J/cm3-K)

10.5

1.2 2.5

19

Temperature vs. time Temperature slope vs. time

T (°C)

t (s) t (s)

)(ln
)(ln

td
Td

0.1

1

10

100

0.001 0.01 0.1 1 10 100

Measured
Predicted

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.001 0.01 0.1 1 10 100

Measured
Predicted

Average k = 
0.93 W/m-K

(1.0±0.2 typical)

Average ρCp = 
2.19 J/cm3-K
(2.0 typical)

Typical fitting data at each pixel



Predicted Thermal Properties for Thin EB-PVD TBC

• TBC coating thickness L = 50µm, substrate thickness = 3.1 mm
• Sample curtsey of Dr. A.M. Limarga and Dr. D. Clark of Harvard Univ. 
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Predicted thermal properties for thin metallic 
bond coat on Rene80 substrate

• Bond coat thickness ~125µm; image noise due to surface roughness
• Sample curtsey of Dr. A. Kulkarni of Siemens
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Thermal tomography plane slice images of thin 
metallic bond coat on Rene80 substrate

• Each bond coat slice ~28µm thick; each substrate slice ~55µm thick
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Thermal tomography cross-section slice images of 
thin metallic bond coat on Rene80 substrate

• Bond coat thickness is assumed at 125µm with total of 4.5 slices, so each 
slice thickness is 28µm

• Substrate thickness is assumed 3.1mm with total of 56.5 slices, so each 
substrate slice is 55µm thick
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Thermal tomography images of a 1”-dia. TBC 
sample (APS TBC, 14mil thick)

• Each coating slice is ~18µm thick, each substrate slice is ~43µm (scaled by diffusivity)
• Many small cracks (<1mm in size) were detected within TBC (@ half TBC thickness)
• Sample curtsey of Dr. D. Zhu of NASA – NASA is now conducting destructive verification!
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Comparison of measured TBC thermal properties from 
thermal imaging at ANL and other methods

• All EB-PVD TBCs, thickness from 50 to 175 µm
• Accuracy typically within 10%! 
• Samples from Dr. A.M. Limarga and Dr. D. Clark of Harvard Univ. 
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Accuracy for TBC Property Predictions

• Current measurement data are repeatable and accurate 
– Repeatability is typically <2%
– Measured data are <10% compared with those by other methods (for 

EB-PVD TBCs)

• Measurement accuracy could be affected by
– Secondary effects such as surface roughness, flash duration, black 

paint, system setup, etc; 
– Note: data from other methods may not be accurate (e.g., accuracy of 

laser flash method is normally considered within 10%)



Summary
• Multilayer modeling method was developed for quantitative measurement 

and imaging of TBC thermal properties
– Predicted thermal properties are repeatable and accurate

• Repeatability is typically <2%
• Measured data are <10% compared with those by other methods (for EB-PVD TBCs)
• Measured data for metallic coatings were also accurate (data not shown here)
• Additional calibration with APS TBCs are planned

– “All” thermal properties of a coating are measured in one test
• Laser flash, e.g., needs to measure coating density and heat capacity, both 

measurements are not trivial
– Capable to predict evolution of TBC conductivity for entire TBC life cycle

• TBC samples are required (some obtained)

• Thermal tomography method was improved for 3D structural imaging
– Destructive verification for detected small-cracks is being conducted (NASA)
– A new theory with improved depth resolution was developed

• Collaborations were established with industry and academia for technology 
development and potential technology transfer

– Siemens, Praxair, Rolls Royce, SUNY, NASA, UCSB, etc
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Planned Future Efforts
• Development of thermal modeling method

– Continue calibration of predicted TBC properties
• For APS TBCs as well as EB-PVD TBCs
• Apply to wider TBC parameter range: thin/thick, graded/layered, etc

– Investigate secondary effects that affect prediction accuracy
• Surface roughness, heat loss, flash duration, black paint, system setup, etc

– Develop method to determine thermal properties of dual-layer coatings and 
coating conductivity gradient with depth (due to thermal exposure)

– Develop models to account for coating transparency (so as-sprayed coating can 
be directly imaged)

• Development of thermal tomography method
– Correlate NDE data with destructive examination results
– Implement and validate the new high-resolution algorithm for data processing

• Validation of NDE model for TBC lifetime prediction
– In collaboration with partners, perform TBC life-cycle tests and correlate NDE 

data with TBC life

• Correlation between different NDE methods
– Work with collaborators who are developing other methods
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